手机浏览器扫描二维码访问
对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。
我们来解读一下这个猜想说的啥。
首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。
例如这是一个我们常见的数集,而且是有限的(只包括3个元素):{1,2,3}
至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合。
当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:
在这些集族中,有一类特殊的集族对并运算封闭。
对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。
以下面这个集族为例:{1}{1,2}{1,2,3}{1,2,3,4}
无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。
所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。
值得注意的是,这一猜想中的“一半”是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。
它于1979年被一个叫PéterFrankl的数学家提出,所以也一度被叫做Frankl猜想。
看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。
达特茅斯学院数学教授PeterWinkler曾经在1987年就这个猜想给出尖锐的评价:
并封闭集合猜想确实很有名,除了它的起源和它的答案。
为了解决这个问题,数学家们也已经尝试过不少方法。
例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。
像是将它和图论中的二分图(BipartiteGraph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。
又或是给其中的元素加以限制,再加以证明……
BUT,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。
来自哥伦比亚大学的助理教授WillSawin对此评价称:
它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”很像。
然而,如今却没有任何一个证明能真正搞定它。
问题就这样进度缓慢,直到2022年秋天,谷歌研究员JustinGilmer借着朋友结婚的契机,回到了罗格斯大学校园。
Gilmer回母校的时间是2022年10月,此时距他毕业离开数学学术圈,已过去7年。这些年来,他自觉无心专注纯数学领域,转而自学编程,投身了IT行业。
国运:拥有多重身份的我很合理吧 重生在宝可梦,我的后台超硬 摊牌了,我爹是绝顶高手! 我的徒弟不对劲 穿到八零,我自带锦鲤系统! 至尊战皇 宗门全是美强惨,小师妹是真疯批 暗无 玄灵界都知道我柔弱可怜但能打 大明:开局气疯朱元璋,死不登基 农夫是概念神?三叶草了解一下! 新人驾到 我一枪一剑杀穿大陆 快穿之炮灰得偿所愿 永恒大陆之命运 混迹娱乐圈的日子 在下潘凤,字无双 哦豁!虐文炮灰不干了! 穿成商户女摆烂,竟然还要逃难! 译文欣赏:博伽瓦谭
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...
林易先是用Crossover在三分线弧顶晃开了防守人的重心,紧接着用山姆高德过掉了补防的阿里扎,哇靠!不看人传球,队友空了!不,队友选择高抛,漂亮的空中接力!等等,怎么有点奇怪呢?因为完成以上动作的是一位七尺大个。这是一段热血沸腾的篮球故事。书友群484028022,欢迎大家进群聊天!...
一个落魄的大学生阴差阳错地灵魂穿越到了古代,稀里糊涂地做了皇子,又发动政变赶走太子当上了皇帝,从此便过上了锦衣玉食声色犬马的生活。但他却不满足,他要做一个全能型的功夫皇帝因此,他拜武林宗师学习武功,又向江湖术士讨取御女秘方,美艳绝伦的妃子欲望强烈的宫女温婉恬静的皇后妖艳迷人的异族美女野性十足的江湖侠女,各种类型的美女纷纷被他男人的功夫征服金钱权利和美女一个都不能少!想爽的,还等什么呢?本书保证精彩,敬请放心收藏,推荐!...
刚发现自己会被裴聿城的意识附身时,林烟是拒绝的。明明在酒吧蹦迪,一醒来,躺在了荒郊野岭。明明在家里打游戏,一醒来,站在了欧洲大街。明明在跟男神烛光晚餐,一醒来,站在了男洗手间。这日子没法过了!后来的林烟大佬求上身,帮我写个作业!大佬求上身帮我考个试!大佬求上身,帮我追个男神!大佬听说生孩子挺疼...
(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...
...